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A theory of asymmetric viscoelasticity of anisotropic polymer systems has been formulated based on the re-
laxation dynamics of irreversible processes. Consideration has been given to the effect associated with the re-
laxation of couple stresses.

Introduction. Much attention has been given recently to studying the viscoelasticity of different anisotropic
polymer systems. This is primarily true of polymer liquid crystals (LCs), cross-linked LC elastomers, polymer nano-
composites, and polymer suspensions. Their most significant difference from traditional polymer materials is the pres-
ence of relaxation anisotropy. The viscoelastic characteristics of anisotropic polymer media are tensor quantities.
Therefore, unlike isotropic systems, they are determined by a substantially larger number of basic macroscopic parame-
ters. Experimental determination of the tensor rheological properties of anisotropic polymer systems represents the most
complicated problem. This field of rheology, on the whole, is only in the initial stage of development.

There can be two theoretical approaches to the rheology of anisotropic polymer systems. The first approach is
based on molecular dynamics. It enables one to study the physical nature of anisotropic viscoelastic effects. The sec-
ond, phenomenological, approach is restricted to studying only the macroscopic properties of these fairly complex
polymer media. One is able, within the framework of this approach, to allow for the influence of the motion and
strain of the microstructure of a medium on its rheological properties by introducing structural variables. The prime
objective of continuum theories is the establishment of general constitutive equations under the minimum assumptions
of the molecular structure of anisotropic media. Molecular theories are based on quite specific assumptions of the
structure of these media and operate, unlike continuum theories, with a few molecular parameters.

The greatest progress toward description of the dynamics of low-molecular-weight LCs has been made at pre-
sent using continuum theories [1–5]. An analogous situation is also observed in the theory of viscoelasticity of poly-
mer LCs. The continuum theory of anisotropic viscoelasticity of LC polymers has been initiated by the investigations
in [6–11]. A quasilinear rheological equation of state with anisotropic relaxation time and viscosity was formulated in
them for simple reasons of symmetry. In this approach, an important role is played by the molecular flexibility of LC
polymers and its associated elastic strains accompanying their flow. The anisotropic nonlinear viscoelasticity of poly-
mer systems with different degrees of rigidity has begun to be studied in [12–16] within the framework of the classi-
cal thermodynamics of irreversible processes. This approach is based on the introduction of internal (latent) variables
for description of viscoelastic effects. Here, critical is the fact that the physics of such continua can be described in
general form by neither mechanics nor electro(magneto)dynamics separately. It is only the thermodynamics of irre-
versible processes that enables one to obtain a general description of the macroscopic properties of anisotropic polymer
systems. Within the framework of a unified approach, one can investigate the anisotropic viscoelasticity of polymer
liquids and rigid or highly elastic bodies, for example, LC elastomers [12, 15]. Nonequilibrium thermodynamics pro-
vides a general basis for description of the macroscopic properties of different anisotropic polymer systems in equilib-
rium and nonequilibrium situations.

In this work, we have presented a theory of anisotropic viscoelasticity of polymer nematics; the unit vector
(director) characterizing microstructural orientation has been used as the structural variable in this theory. The rheologi-
cal equations of state of irreversible processes have been derived based on their relaxation thermodynamics. This ther-
modynamic approach to the rheology of viscoelastic media is based on a natural generalization of the classical
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nonequilibrium thermodynamics created by Onsager, Prigogine, et al. [17, 18] to systems with a memory [19]. The
simplest case, where thermodynamic fluxes and forces are related by relaxation equations of first order, has been con-
sidered.

Equations of Motion. Anisotropic polymer systems are of interest to researchers due to the unusual viscoe-
lastic properties of these systems. From the macroscopic viewpoint, they are anisotropic viscoelastic media with inter-
nal rotations and asymmetric stresses. Regular description of their motion in terms of the velocity v and the
force-stress tensor σ

=
 requires generalization. In this case, it is necessary to introduce an additional kinematic quantity

Ω, i.e., the angular velocity of internal rotation, which allows for reorientation of the molecules and their rotation
about the intrinsic axes. This quantity should be understood as an averaged quantity characterizing the internal rotation,
which differs from the rotation of the entire medium. In the dynamics of media with a free internal rotation, the an-
gular velocity Ω is an independent quantity and does not depend on the angular rotational velocity of the entire me-
dium ω. Description of the motion of media with internal rotations is based on the equation for the change in the
momentum [20]

d
dt

 ∫ 
V

ρvdv = ∫ 
S

tds + ∫ 
V

ρfdv (1)

and the equation for the change in the total moment of momentum

d
dt

 ∫ 
V

ρLdv = ∫ 
Σ

(x × t + c) dσ + ∫ 
V

ρ (x × f + m) dv . (2)

The density of the total moment of momentum L  is represented in the form

L = x × v + S , (3)

where x × v is the external moment of momentum and S = I
=
⋅ΩΩ is the internal moment of momentum per unit mass;

I
=
 for nematic (uniaxial) media is determined in the form

I= = IMδ= + (IN − IM) nn , (4)

here n is the orientation vector (director) of the medium and IN characterizes, on the average, the inertial properties of
rotation of molecules about their intrinsic axes. Equations (1) and (2) represent Euler laws for a continuum; according
to these laws, the rate of change of the momentum of its arbitrary volume V is determined by the sum of forces act-
ing on it, whereas the rate of change of the total moment of momentum is determined by the sum of moments.

In the dynamics of continua, it is conventional to recognize two classes of forces and moments — bulk forces
and moments f and m and surface ones t and c. The first quantities are single-valued-functions of the spatial points x
and the time t, whereas the second ones depend on the orientation l of the area elements ds on which they act. It can
be shown that they are linear functions of the orientation vector l:

ti = lkσki ,   ci = lkµki . (5)

These relations determine the tensors of force σij and couple µij stresses. The first subscript in them corresponds to
the plane on which the stress acts, and the second subscript corresponds to the direction of its action. The diagonal
components of the tensor µij characterize torque moments, and the off-diagonal components characterize bending mo-
ments.

With account for (5), from the dynamic laws (1) and (2) we can obtain the following equations of motion in
stresses:

ρ 
dvi

dt
 = σji,j + ρfi , (6)
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ρ 
dSi

dt
 = σi + µji,j + ρmi ,   σi = εijkσjk . (7)

The equation for internal rotation (7), which is called the moment equation, was obtained for the first time by the
variational method by E. Cosserat and F. Cosserat in 1909 for solid deformable media [21]. It was later used to de-
scribe liquid media (in particular, LCs).

Thus, the stressed state of a continuum with internal rotations is characterized by two stress tensors σ
=

 and µ
=

,
which are asymmetric in the general case. The presence of asymmetric stresses leads to new types of flows. The ef-
fects associated with allowance for couple stresses are substantial in inhomogeneous flow fields. From Eq. (7) it fol-
lows that the asymmetry of the stress tensor σ

=
 is attributed to the presence of the couple stresses µ

=
, the bulk moments

m, and the inertia of internal rotation. In the classical theory of continua, these asymmetry factors are absent; there-
fore, the stress tensor σ

=
 is symmetric. It is noteworthy that the inertial term related to the internal rotation in (7) is

usually disregarded in the dynamics of low-molecular-weight nematics [22]. In viscoelastic (polymer) nematodynamics,
it can turn out to be substantial at fairly long relaxation times of the medium by virtue of the interrelation of inertial
and viscoelastic effects [11].

Constitutive Equations of Polymer Nematics. They are naturally derived based on the relaxation thermody-
namics of irreversible processes. Let us use the well-known formula for the entropy production Ps in media with in-
ternal rotations and couple stresses:

TPs = σijγij + µijΩj,i − 
df
dt



T

 . (8)

We will consider only isothermal processes and disregard thermal effects. According to the second law of thermody-
namics, we have Ps ≥ 0, i.e., the entropy production is strictly positive for nonequilibrium processes and disappears in
equilibrium. The asymmetric strain-rate tensor γij is determined in the form

γij = eij + ωij
r
 ,   ωij

r
 = ωij − ωij

in
 , (9)

where eij = v(j,i) and ωij = v[j,i]. The internal rotation is characterized by the tensor ωij
in = εijkΩk.

Experience shows that nematic LC media show orientational elasticity associated with the inhomogeneous di-
rector field n(x, t). In pure form, it is found in a quiescent LC experiencing the moment action from the magnetic
field or rigid boundaries [23]. Therefore, for the free energy of a polymer nematic and without allowance for the com-
pressibility and thermal effects we take the following constitutive relation:

f = f (ni, ni,j) . (10)

Here we have used the same internal (structural) variables as in the case of low-molecular-weight LCs, i.e., the direc-
tor and the director gradient ni,j = ∂ni

 ⁄ ∂xj. An expression for the free energy of low-molecular-weight nematics was
obtained by Oseen [24] and Frank [25]. In the region of small strains, one usually uses Frank’s free energy for ne-
matic media; it is determined as the quadratic form of orientational gradients:

2f = (K1 − K2) ni,jni,j + K2ni,jni,j + (K3 − K2) ninjnk,ink,j . (11)

Based on (8) and (10), we can obtain expressions for thermodynamic forces and fluxes. We determine the
material derivative of the free energy

df
dt

 = 
Df
Dt

 + 



n[j 

∂f

∂ni]
 + n[j,k 

∂f

∂ni],k




 ωij , (12)

where Df/Dt is the Jaumann free-energy derivative. By virtue of the rotational invariance of the free energy df/dt =
Df/Dt, from expression (12) we obtain the following relation:
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εijk 



nj 

∂f

∂nk
 + nj,m 

∂f
∂nk,m

 + nm,j 
∂f

∂nm,k




 = 0 . (13)

In the equilibrium theory, it was derived for the first time by Eriksen [26]. Using this condition of invariance of the
free energy to any rigid rotation of the medium and the relation

dni

dt
 = εijkΩjnk ,   

d

dt
 nk,i = 





dnk

dt


,i

 − nk,mVm,i , (14)

we find the expression for the velocity of the free energy

df

dt
 = 

∂f

∂ni
 
dni

dt
 + 

∂f

∂ni,j
 
d

dt
 ni,j = σik

e γik + µki
e Ωi,k . (15)

Here we have introduced the following notation:

σij
e
 = − 

∂f

∂nk,i
 nk,j ,   µij

e
 = εjmknm 

∂f
∂nk,i

(16)

for nondissipative tensors of force and couple stresses. With account for (15), the expression for the entropy produc-
tion (8) is written in the form

TPs = σ~ijγij + µ~ijΩj,i ≥ 0 , (17)

where σ~
=

 and µ~
=

 are the dissipative contributions to the force and couple stresses. The total stresses are determined in
the form

σij = − pδij + σij
e
 + σ~ij ,   µij = µij

e
 + µ~ij . (18)

In most cases, polymer nematics can be considered as incompressible media. The first equation in (18) determines the
total stress for liquids with a constant density accurate to the arbitrary additive isotropic tensor.

Let us select γij and Ωj,i as the forces and the quantities σ~ij and µ~ij conjugate to them as the fluxes. For an-
isotropic media whose flow is accompanied by relaxation processes it is natural to assume that the relationship be-
tween the forces and fluxes in the simplest case is determined, without allowance for the cross effects, by the
relaxation equations of first order

τijkm 
D
Dt

 σ~km + σ~ij = ηijkmγkm , (19)

Θijkm 
D
Dt

 µ~km + µ~ij = βijkmΩm,k . (20)

In what follows, we will use only the Jaumann definition of the rate of change of stresses Daij
 ⁄ dt = a

.
ij + aieωej −

ωieaej. Other definitions of the rate of change of asymmetric stresses contain additional terms which are more conven-
iently introduced into the constitutive equations [10]. The nonnegative character of the entropy production (17) imposes
additional restrictions on the material parameters determined by the rheological equations (19) and (20). In them, τ

=
 and

Θ
=

 are the relaxation-time tensors and η
=

 and β
=
 are the corresponding viscosity tensors determined by the specific prop-

erties of the media.
For nematic media these tensors must satisfy the transversal-isotropy condition associated with the presence of

preferred orientation and be even functions of the director, since the unit vector n is physically indistinguishable from
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−n. Such restrictions substantially decrease the number of independent material parameters determined by these tensors.
In the case of an incompressible liquid, the nematic viscosity is determined in the form of the sum [10]

ηijkm = αijkm
0

 + αijkm
1

(21)

of the isotropic tensor

αijkm
0

 = η1δikδjm + η2δimδjk

and the anisotropic fourth-rank tensor

αijkm
1

 = η3nijkm + η4nikδjm + η5njkδim + η6nimδjk + η7njmδik ,

where we have introduced the following notation: nij = ninj and nijke = ninjnkne. The nematic viscosity tensor with ac-
count for spin effects is characterized by seven scalar coefficients of viscosity ηα. The nematic tensors of relaxation
times τ

=
 and Θ

=
 and the moment viscosity β

=
 have an analogous structure but with other scalar coefficients.

The rheological equation (19) was obtained for the first time in [10] for simple reasons of symmetry. If we
disregard the inertia of internal rotation, the bulk moments, and the couple stresses, it is reduced to the rheological
equation of an anisotropic viscoelastic liquid with a symmetric stress tensor (obtained in [6]). The class of liquids de-
termined by this equation is characterized by three basis coefficients of viscosity and three basis relaxation times.

In the particular case, where Θ
=

 = 0, the rheological equation (20) determines the viscous couple stress for in-
compressible nematics

µ~ij = β1Ωi,j + β2Ωj,i + β3Ωi,knkj + β4Ωj,knki + β5Ωk,inkj + β6Ωk,jnki + β7Ωk,nnknij . (22)

If we disregard the inertia of internal rotation (I
=
 = 0), the relaxation (polymer) properties of a medium (τ

=
 = 0), and

the dynamic contribution to couple stresses (µ~
=

 = 0), the constitutive equations (19)–(21) are reduced to the rheological
equation of Leslie–Ericksen theory for low-molecular-weight LCs [27, 28].

Orientational Dynamics. The dynamics of the director n appearing in the rheological equations of polymer
nematics is described using an additional equation which is characterized by the orientational properties of a medium.
This equation can be derived directly from the equation for internal motion (7). As a result, we obtain the equation
for the director [11]

ρIij
M

 
d

2
nj

dt
2  − ρINΩNΩi

M
 = hi

M
 + 2njσ

~
ji
 a (23)

and the spin equation

ρIN 
dΩN
dt

 = εijkniσ
~

jk
 a

 , (24)

which allow for three rotational degrees of freedom. The first equation describes the reorientation of the director, and
the second one describes the rotational degree of freedom associated with the rotation of molecules about their intrinsic
axes. The angular velocity of internal rotation Ω = ΩN + ΩM is made up of the rotational velocity of the director Ωi

M

= εijknjdnk
 ⁄ dt and the velocity of internal rotation about the director Ωi

N = ΩNni, where ΩN = Ωini. In the equations of
rotational motion (23) and (24), I

=
M = IM δ

=
M is the transverse component of the rotational-inertia tension, hM = hδ

=
M is

the transverse component of the molecular field, and δ
=
M = δ

=
 − nn is the transverse Kronecker symbol.

The internal elastic forces of an LC nematic and the external forces acting on the director from the magnetic
field can be described using a unified molecular field h = he + hm. Here he plays the role of a molecular field tending
to establish the same direction of the director in the entire volume of the nematic. According to [3], it is determined
in the form
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hi
e
 = πij,j − ∂f ⁄ ∂ni ,   πij = ∂f ⁄ ∂nj,i . (25)

The presence of the magnetic field leads to an additional contribution to the molecular field:

hi
m

 = χanjHjHi . (26)

Here χa = χN + χM and χN and χM are the principal values of the dynamic-susceptibility tensor along the director and
across it respectively. It is assumed that the magnetic field influences the stress tensor only in terms of the change in
the orientation. Therefore, the magnetic-field strength H as an independent variable does not appear in the free energy.

In deriving Eqs. (23) and (24), we have allowed only for the equilibrium contribution to couple stresses,
which, according to (16), is determined in the form µmi = εijknjπmk. Here we do not consider the effects associated
with inhomogeneous internal rotations; therefore, the dynamic contribution to couple stresses is equal to zero. In this
case, we have the relation

εijk∂µmk
 ⁄ ∂xm = − 2σij

ea
 + nihj

M
 − hi

M
nj , (27)

where σij
e,a is the asymmetric part of the nondissipative stress tensor. The above relation has been used in deriving

Eqs. (23) and (24).
Thus, orientational and spin dynamics is determined by the asymmetric stresses σ

=
~a, which in turn are de-

scribed, according to (19), by the system of interrelated relaxation equations

τ[ij][km] 
Dσ~km

 a

Dt
 + τ[ij](km) 

Dσ~km
 s

Dt
 + σ~ij

 a
 = η[ij](km)ekm + η[ij][km]ωkm

r
 ,

τ(ij)(km) 
Dσ~km

 s

Dt
 + τ(ij)[km] 

Dσ~km
 a

Dt
 + σ~ij

 s
 = η(ij)(km)ekm + η(ij)[km]ωkm

r
 , (28)

where σ
=
~s is the symmetric part of the stress tensor. Here symmetrization is by the subscripts in parentheses, whereas

square brackets denote asymmetrization by the corresponding subscripts. An analysis of Eqs. (23)–(28) shows that in-
ertial and viscoelastic effects can be related in the orientational dynamics of viscoelastic anisotropic media at long re-
laxation times.

Let us consider the simple case where the magnetic field is absent and the inertia of internal rotation and the
orientational elasticity can be disregarded. Under these conditions, we have σ

=
~a = 0 according to (23). With allowance

for this, from system (28) we obtain the following orientation equation for viscoelastic (polymer) nematics:

τim 
D

2
nm

Dt
2  + 

Dni

Dt
 = bijm 




λ1θ

∗
 
Dejm

Dt
 + λ2ejm




 , (29)

where τij = θ∗δij
M and bijk = δij

Mnk. In deriving (29), we have used the relation Dni
 ⁄ Dt = ωij

r nj, where Dni
 ⁄ Dt =

dni
 ⁄ dt − ωijnj is the Jaumann derivative of the director.

Thus, the evolution equation for the director of polymer nematics (29) is viscoelastic in character. It was ob-
tained for the first time in [16] based on the traditional thermodynamic approach to the rheology of viscoelastic media.
In this case, one is able to consider Maxwell-type viscoelastic nematodynamics within the framework of the thermo-
dynamics of irreversible processes by extending the notion of the system’s state. Two additional (latent) variables —
the tensors of elastic strain and relative elastic rotation — are introduced into the free energy. In the case of viscous
nematodynamics, the equation for the director (29) is reduced to the well-known orientation equation of Ericksen

Dni

Dt
 = λ (eijnj − ninjnkejk) , (30)
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here λ is the dimensionless material parameter determining the character of the orientational process.
The orientational relaxation of LC polymers has experimentally been studied in [19, 30] and a substantial

growth in the relaxation time of the director of nematic comb-shaped polymers as compared to low-molecular-weight
systems has been found.

Conclusions. The investigation carried out is primarily aimed at forming a general approach to description of
the viscoelasticity of different anisotropic polymer systems. They are considered as anisotropic viscoelastic media with
internal rotations and asymmetric stresses. The concept of internal rotation provides a unified basis for studying the
macroscopic behavior of solid and liquid anisotropic polymer media. In the present work, we have derived the
rheological equations of state and the equation of orientation of nematic (uniaxial) viscoelastic liquids based on the re-
laxation dynamics of irreversible processes. These equations are viscoelastic (relaxation) in character and determine a
new class of anisotropic viscoelastic liquids.

From the molecular viewpoint, the low- and high-frequency viscoelasticity of polymer systems is determined
from the dynamic equations of macromolecules with a memory which allow for the relaxation interaction of the mac-
romolecules with their viscoelastic environment [31, 32]. These generalized Langevin equations are derived from mi-
croscopic equations of motion [33, 34]. Such an approach, which is based on non-Markovian equations of motion of
individual molecules, provides an explanation for the high-frequency viscoelasticity of ordinary (low-molecular-weight)
liquids [35]. Critical is the fact that this approach describes the general molecular mechanism of viscoelasticity of all
liquids.

The considered thermodynamic approach to the rheology of polymer liquids makes it possible to investigate
viscoelastic phenomena without using an additional parameter, which is usually assigned the meaning of elastic strain.
Here we have considered the simplest case, where the thermodynamic forces and fluxes are related by the quasilinear
relaxation equation of first order. All the kinematic variables have been selected without reference to the rheological
properties of the viscoelastic liquids considered.

The thermodynamic theory of viscoelastic nematodynamics proposed allows a simple generalization to polydis-
perse systems characterized by the anisotropic spectrum of relaxation times. It is noteworthy that, extending the under-
standing of the system’s state by introducing additional variables, we can, in principal, formulate the constitutive
equations of polydisperse media so that they contain only the quantities referring to a single spatial point at a single
instant of time. However, the additional objective — the necessity of solving a system of ordinary differential equa-
tions describing the simultaneous relaxation of a large number of internal parameters — arises in this traditional ther-
modynamic approach to viscoelasticity, which is based on the principle of time localizability.

NOTATION

c, surface moment; d/dt, material derivative; D/Dt, Jaumann derivative; eij, symmetric part of the velocity gra-
dient; f, bulk force; f, free energy; h, molecular field; he, elastic part of the molecular field; hm, magnetic part of the
molecular field; hM, transverse component of the molecular field; H, magnetic-field strength; I

=
, rotational-inertia tensor;

IN and IM, principal values of the inertia tensor; Kα, Franck modulus; L, total moment of momentum; l, unit vector of
the external normal to S; m, bulk moment; ni, director; ni,j, director gradient; Ps, entropy production; p, isotropic pres-
sure; S, internal moment of momentum; T, temperature; t, surface force; t, time; V, selected volume of the medium;
v, velocity of translational motion of the medium’s element; x, radius vector of a point of the medium; βα, coefficient
of moment viscosity; β

=
, moment-viscosity tensor; γij, asymmetric strain-rate tensor; δ

=
, unit tensor; δ

=
M, transverse

Kronecker symbol; ηα, coefficient of viscosity; η
=

, viscosity tensor; θ∗, orientational relaxation time; Θ
=

, tensor of mo-
ment relaxation times; µ

=
, couple-stress tensor; µij

e, nondissipative contribution to the couple stresses; µ~ij, dissipative
contribution to the couple stresses; ρ, density of the medium; σ

=
, force tensor; σij

e, nondissipative stress tensor; σij
ea,

asymmetric part of the tensor σij
e; σ~ij, dissipative stress tensor; σ~ij

s  and σ~ij
a,  symmetric and asymmetric parts of the ten-

sor σ~ij; Σ, surface bounding the medium’s volume; τ
=
, relaxation-time tensor; χN and χM, principal values of the dy-

namic-susceptibility tensor; λ, λ1, and λ2, dimensionless material parameters; Ωi, angular velocity of internal rotation;
Ωi
M, rotational velocity of the director; Ωi

N, velocity of internal rotation about the director; Ωi,j, gradient of the angular
velocity of internal rotation; ωij, asymmetric part of the velocity gradient; ωij

in, internal-rotation tensor. Subscripts and
superscripts: a, asymmetric; e, equilibrium, in, internal; m, magnetic; r, relative; s, symmetric.
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